
[Subramani, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [51]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

High Performance Dynamic Load Balancing With Inter-Dependent Tasks And Dependent

Tasks in Cloud Computing Environments
B.Subramani*, S.Rekha

*Head, Department of Information Technology, Dr.N.G.P. Arts and Science College, Coimbatore, India

M.Phil Scholar, Department of Computer Science, Dr.N.G.P. Arts and Science College, Coimbatore,

India.

Abstract
Cloud computing is an entirely internet-based approach where all the applications and files are hosted on a

cloud which consists of thousands of computers interlinked together in a complex manner. A load balancing

algorithm attempts to improve the response time of user’s submitted applications by ensuring maximal utilization of

available resources. The main objective of load balancing methods is to speed up the execution of applications on

resources whose workload varies at run time in unpredictable way. Load balancing of non preemptive independent

tasks on virtual machines (VMs) is an important aspect of task scheduling in clouds. Whenever certain VMs are

overloaded and remaining VMs are under loaded with tasks for processing, the load has to be balanced to achieve

optimal machine utilization. Previous work Propose an algorithm named honey bee behavior inspired load balancing

(HBB-LB), which aims to achieve well balanced load across virtual machines for maximizing the throughput. But

the major problem of this work well for independent task and it doesn’t work well for dependent task. Improve the

results of the existing bee colony optimization methods, in this work proposed a novel modified artificial bee colony

algorithm which supports for dependent and independent task with modified artificial bee colony algorithm for load

balancing tasks. The effectiveness of the proposed Modified Artificial Bee Colony for load balancing dependent

and independent tasks (MABC-LBDIID) algorithms in reducing the operational cost of the cloud system is

demonstrated by comparing the results with existing HBB-LB .The proposed algorithm also balances the priorities

of tasks on the machines in such a way that the amount of waiting time of the tasks in the queue is minimal.

Keywords: Load balancing , dynamic load balancing ,Static load balancing ,Cloud computing, Modified Artificial

Bee Colony(MABC), independent task, dependent task, Force-Directed Scheduling Approach(FDSA).

 Introduction
Cloud computing is an entirely internet-

based approach where all the applications and files

are hosted on a cloud which consists of thousands of

computers interlinked together in a complex manner.

Cloud computing incorporates concepts of parallel

and distributed computing to provide shared

resources; hardware, software and information to

computers or other devices on demand. With the

development of information and communication

technologies. The distributed systems are more

popular as the computing demand increases. A large

scale distributed systems are required with a

considerable amount of servers. For efficient use of

distributed system it is important to allocate tasks to

each node appropriately, if the tasks are allocated

randomly, it is possible some nodes gets overloaded

while other becomes idle, to avoid this an efficient

dynamic load balancing using random walk search on

content based distributed clusters are used.

 A distributed networks allows large scale

resource sharing and system integration, clusters are

attractive platforms for deploying applications at

large scale for high performance. For the proper

distribution of user requests, load balancing is

required in the clustered environment.

Load Balancing is a method to distribute

workload across one or more servers, network

interfaces, hard drives, or other computing resources.

Typical datacenter implementations rely on large,

powerful (and expensive) computing hardware and

network infrastructure, which are subject to the usual

risks associated with any physical device, including

hardware failure, power and/or network interruptions,

and resource limitations in times of high demand.

http://www.ijesrt.com/

[Subramani, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [52]

Load balancing is the process of improving

the performance of the system by shifting of

workload among the processors. Workload of a

machine means the total processing time it requires to

execute all the tasks assigned to the machine [1].

Load balancing is done so that every virtual machine

in the cloud system does the same amount of work

throughout therefore increasing the throughput and

minimizing the response time [2]. Load balancing is

one of the important factors to heighten the working

performance of the cloud service provider. Balancing

the load of virtual machines uniformly means that

anyone of the available machine is not idle or

partially loaded while others are heavily loaded. One

of the crucial issue of cloud computing is to divide

the workload dynamically. The benefits of

distributing the workload includes increased resource

utilization ratio which further leads to enhancing the

overall performance thereby achieving maximum

client satisfaction [3].

Load balancing methods have been

categorized into two ways [4] :Static load balancing

and dynamic load balancing

Static load balancing algorithms require

aforementioned knowledge about the applications

and resources of the system [5]. The decision of

shifting the load does not depend on the current state

of the system. The performance of the virtual

machines is determined at the time of job arrival.

In this type of load balancing algorithms e.g., [6], the

current state of the system is used to make any

decision for load balancing. It allows for processes

to move from an over utilized machine to an

underutilized machine dynamically for faster

execution. This means that it allows for process

preemption which is not supported in Static load

balancing approach.

In cloud computing environments, whenever

a VM is heavily loaded with multiple tasks, these

tasks have to be removed and submitted to the under

loaded VMs of the same data center. In this case,

when we remove more than one independent task

from a heavy loaded VM and if there is more than

one VM available to process these tasks, the tasks

have to be submitted to the VM such that there will

be a good mix of priorities i.e., no task should wait

for a long time in order to get processed. Load

balancing is done at virtual machine level i.e., at

intra-data center level. The some of the task are

heavily dependent on one VM, in earlier work HBB-

LB only supports load balancing task for independent

task only ,if it becomes the dependent task it is not

supported by the system in order to solve this

problem in this work presents an force-directed

scheduling approach is presented that considers the

online application workload and limited resource and

peak power capacity for dependent task ,then

suggests that load balancing in cloud computing can

be achieved by modeling the foraging behavior of

modified artificial bee colony algorithm . This

algorithm is derived from a detailed analysis of the

behavior that modified bee adopt to find and reap

food. In bee hives, there is a class of bees called the

scout bees which forage for food sources, upon

finding one, they come back to the bee hive to

advertise this using a dance called

waggle/tremble/vibration dance. The display of this

dance, gives the idea of the quality and/or quantity of

food and also its distance from the bee hive. Forager

bees then follow the Scout Bees to the location of

food and then begin to reap it. They then return to the

beehive and do a waggle or tremble or vibration

dance to other bees in the hive giving an idea of how

much food is left and hence resulting in either more

exploitation or abandonment of the food source.

The specific contributions of this paper include:

 An algorithm for scheduling and load

balancing of non preemptive independent

and dependent tasks in cloud computing

environments inspired by modified honey

bee behavior

 Correlation of the proposed MABC-LBDID

algorithm with actual foraging behavior of

modified honey bees and force-directed

scheduling approach is presented for

dependent task identification for epoch time

of the task.

 An analysis and systematic study with

mathematical evidence to show how the

modified honey bee behavior inspired load

balancing can work for cloud computing

environments for both dependent and

independent tasks.

 Performance analysis of the proposed

algorithm and an evaluation of the algorithm

with respect to other existing algorithms.

Background study
H. Mahalle et al. [7] discussed this method

in which jobs are divided evenly between all

processors in a round robin order without considering

the work load. Here the time slicing mechanism is

used, which divides the time into multiple slices and

each node is given a particular time slice or time

interval in which they have to perform their task.

Though the work load distributions between

processors are equal but the job processing time for

different processes are not same. Soat any point of

time, some nodes may be heavily loaded and others

remain idle. The main advantage of Round Robin

http://www.ijesrt.com/

[Subramani, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [53]

algorithm is that it does not require inter process

communication. However when the jobs are of

unequal processing time this algorithm suffers as the

some nodes can become severely loaded while others

remain idle.

A. Sidhu et al. [8] discussed load balancing

algorithm which is completely based on concept of

finding the appropriate virtual machines for assigning

a particular job. In this the job manager is having a

list of all virtual machines, using this indexed list, it

allot the desire job given by client to the appropriate

machine. As client requests, if the job is well suited

for a particular machine on the basis of size and

availability of the machine, then that job is assign to

the appropriate machine. If no virtual machines are

available to accept jobs then the job manager queued

the request. This algorithm performs well as

compared to round robin algorithm.

M. Nikita et al. [9] proposed a two level

scheme for load balancing. The first level scheduling

is from user application to the VM, and the second is

from the VM to host resources. In this two level

scheduling model, the first scheduler create the task

description of virtual machine, then the second

scheduler finds appropriate resources for the virtual

machine in the host resource, hence overall

performance is increase. The main disadvantage of

this algorithm is it does not improve the response to

request ratio.

In [10], A Comparative Study into

Distributed Load Balancing Algorithms for Cloud

Computing is presented. This paper considers three

potentially viable methods for load balancing in large

scale cloud systems. Firstly, a nature-inspired

algorithm may be used for self-organization,

achieving global load balancing via local server

actions. Secondly, self-organization can be

engineered based on random sampling of the system

domain, giving a balanced load across all system

nodes. Thirdly, the system can be restructured to

optimize job assignment at the servers. Recently

numerous nature inspired networking and computing

models have received a lot of research attention in

seeking distributed methods to address increasing

scale and complexity in such systems.

The honey-bee foraging solution in [11], is

investigated as a direct implementation of a natural

phenomenon. Then, a distributed, biased random

sampling method that maintains individual node

loading near a global mean measure is examined.

Finally, an algorithm for connecting simile services

by local rewiring is assessed as a means of improving

load balancing by active system restructuring. In case

of load balancing, as the web servers demand

increases or decreases, the services are assigned

dynamically to regulate the changing demands of the

user. The servers are grouped under virtual servers

(VS), each VS having its own virtual service queues.

Each server processing a request from its queue

calculates a profit or reward, which is analogous to

the quality that the bees show in their waggle dance.

In [12], Dynamic Load Balancing Strategy

for Grid Computing is presented addressing the

problem of load balancing in Grid computing. As in

[13-14] this paper also proposes a load balancing

model based on a tree representation of a Grid. This

load balancing strategy has two main objectives: (i)

Reduction of the mean response time of tasks

submitted to a Grid; and, (ii) Reduction of the

communication costs during task transferring. This

strategy deals with three layers of algorithms (intra-

site, intra-cluster and intra-grid).

Distributed system load balancing is still an

active area of research in which load balancer

attempts to improve the performance of a distributed

system by using the processing power of the entire

system to smooth out periods of high congestion at

individual nodes, this is done by transferring some of

the workload of heavily loaded nodes to other nodes

for processing. Decisions on how to balance loads

among the nodes are either static or dynamic[15].

Proposed load balancing using modified bee

colony for independent and dependent task

methodology
Cloud computing deals with assigning

computational tasks on a dynamic resource pool of

virtual machines online according to different

requirements from user or the system [16]. The

service requests from the clients for diverse

applications can be routed at any data center to any

end server in the cloud. The routing of service

requests to the diverse servers is based on cloud

management policies depending on load of individual

servers, closeness to databases etc. The two

frequently used scheduling principles in a non pre-

emptive system are the First-in-First-out (FIFO) and

Weighted Round Robin (WRR) policies. These

policies may end up with different degrees of loads

on each and every VM. This may lead to load

difference between VMs computing in parallel. This

creates additional problems of reduction in response

time, wastage of resources and so on.

These kinds of situations leads us to give

more importance to the dynamic load balancing

techniques which solves the problem of load

imbalance between VMs. Load Balancing techniques

are effective in reducing the makespan and response

time. These kinds of the problems is also important

for dependent and independent task while performing

the load balancing task in the cloud computing

http://www.ijesrt.com/

[Subramani, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [54]

,existing work HBB-LB not applicable for dependent

task ,in order to overcome these problem in this work

proposed an modified artificial bee colony algorithm

for balancing the dependent and independent task

perform load balancing for task with priority level

.For that purpose first define the following

constraints

Load Balancing techniques are effective in

reducing the makespan and response time. First

define the condition of maximum lifetime to

complete task . Makespan can be defined as the

overall task completion time. We denote completion

time of task 𝑇𝑖Ti on 𝑉𝑀𝑖 as 𝐶𝑇𝑖𝑗. Hence, the

makespan is defined as the following function,

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max{𝑉𝑀𝑇𝑖𝑗|𝑖 ∈ 𝑡, 𝑖

= 1,…𝑛𝑎𝑛𝑑𝑗 ∈ 𝑉𝑀, 𝑗
= 1,2,… ,𝑚

 (1)

Response time is the amount of time taken

between submission of a request and the first

response that is produced. The reduction in waiting

time is helpful in improving responsiveness of the

VMs.

Let 𝑉𝑀 = {𝑉𝑀1, 𝑉𝑀2, … 𝑉𝑀𝑚} be the set of

𝑚 virtual machines which should process n tasks

represented by the set = {𝑇1, …… . , 𝑇𝑛} . All the

machines are unrelated and parallel and are denoted

as R in the model. Non-preemptive tasks are denoted

as npmtn. Non preemption of a task means that

processing of that task on a virtual machine cannot be

interrupted (assuming that failure does not occur).

Denote finishing time of a task 𝑇𝑖 by 𝑉𝑀𝑇𝑖.
Our aim is to reduce the makespan which can be

denoted as 𝐶𝑇𝑚𝑎𝑥. So our model is

𝑅|𝑛𝑝𝑚𝑡𝑛|𝑉𝑀𝑇𝑚𝑎𝑥. Processing time of a task 𝑇𝑖on

virtual machine 𝑉𝑀𝑗 can be denoted as 𝑃𝑖𝑗.

Processing time of all tasks in a 𝑉𝑀𝑗 can be defined

by Eq. (2).

𝑃𝑗 =∑𝑃𝑖𝑗, 𝑗 = 1,…𝑚

𝑛

𝑖=1

 (2)

By minimizing 𝑉𝑀𝑇𝑚𝑎𝑥, we get Eq. (3).

From Eq. (2) and (3) can imply Eq

∑𝑃𝑖𝑗 ≤

𝑖=1

𝑉𝑀𝑇𝑚𝑎𝑥, 𝑗 = 1, . .𝑚

(3)

𝑉𝑀𝑇𝑚𝑎𝑥 = {max
𝑖=1

𝑛𝑉𝑀𝑇𝑖 max
𝑗=1

𝑛𝑖∑𝑃𝑖𝑗

𝑛

𝑖=1

 (4)

The thershold function of the CPU

utilization load is defined as below

𝑉𝑀𝑇𝑆(𝑣𝑚𝑢𝑡) = 𝑡𝑜(𝑣𝑚𝑢𝑡)/𝑇𝑖 (5)

𝑣𝑚𝑢𝑡 is the VM utilization threshold

distinguishing the non-overload and overload states

of the host; to is the time, during which the host has

been overloaded, which is a function of 𝑢𝑡; and ta is

the total time, during which the host has been active.

The following conditions need to added to measure

the job task when is exceed overload condition,

𝑇𝑗(𝑣𝑚𝑡𝑚 , 𝑣𝑚𝑢𝑡) → 𝑚𝑎𝑥

𝑡0(𝑣𝑚𝑡𝑚 , 𝑣𝑚𝑢𝑡)

𝑡𝑗(𝑣𝑚𝑡𝑚 , 𝑣𝑚𝑢𝑡)
≤ 𝑀

(6)

(7)

where 𝑣𝑚𝑡𝑚 is the time when a VM

migration has been initiated; 𝑢𝑡 is the CPU utilization

threshold defining the overload state of the host;

𝑡0(𝑣𝑚𝑡𝑚 , 𝑣𝑚𝑢𝑡)is the time, during which the host

has been overloaded, which is a function of 𝑣𝑚𝑡𝑚

and 𝑢𝑡; ta is the total time, during which the host has

been active, which is also a function of 𝑣𝑚𝑡𝑚 and

𝑣𝑚𝑢𝑡; and 𝑀 is the limit on the maximum allowed

𝑉𝑀𝑇𝑆(𝑢𝑡) value. It is necessary to maximize the

mean time between VM migrations initiated by the

host overload detection algorithm, which can be

achieved by maximizing each individual inter-

migration time interval. Therefore, we limit the

problem formulation to a single VM migration, i.e.,

the time span of a problem instance is from the end of

a previous VM migration and to the end of the next.

The capacity of

𝐶𝑗 = 𝑝𝑒𝑛𝑢𝑚𝑗 × 𝑝𝑒𝑚𝑖𝑝𝑠𝑗 + 𝑣𝑚𝑏𝑤𝑗

+ 𝑉𝑀𝑇𝑆(𝑉𝑀𝑈𝑡)

(8)

where processing element, 𝑝𝑒𝑛𝑢𝑚𝑗is the

number processors in 𝑉𝑀𝑗, 𝑝𝑒𝑚𝑖𝑝𝑠𝑗 is million

instructions per second of all processors in 𝑉𝑀𝑗 and

𝑣𝑚𝑏𝑤𝑗 is the communication bandwidth ability of

𝑉𝑀𝑗,

𝐶 =∑𝐶𝑖

𝑚

𝑖=1

(9)

Total length of tasks that are assigned to a VM is

called load.

𝐿
𝑣𝑀𝑖,𝑡=

𝑁(𝑇,𝑡)

𝑆(𝑉𝑀𝑖,𝑡)

(10)

Load of a VM can be calculated as the

Number of tasks at time t onservice queue of 𝑉𝑀𝑖

divided by the service rate of 𝑉𝑀𝑖 at time 𝑡. To

estimate the results of overloaded detection results

for VM proposed a Semi hidden markov models with

𝑉𝑀 = {𝑉𝑀1, 𝑉𝑀2, … 𝑉𝑀𝑚} be the set of 𝑚 virtual

http://www.ijesrt.com/

[Subramani, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [55]

machines which should process n tasks represented

by the set 𝑇 = {𝑇1, …… . , 𝑇𝑛} with 𝑆(𝑉𝑀𝑈𝑡) .

𝐿 =∑𝐿𝑣𝑀𝑖

𝑖=1

(11)

Processing time of a VM

𝐿 =∑𝐿𝑣𝑀𝑖

𝑖=1

(12)

Processing time of all VMs

𝑃𝑇 =∑𝐿/𝐶

𝑖=1

(13)

Standard deviation

𝜎 = √
1

𝑚
∑(𝑃𝑇𝑖 − 𝑃𝑇)2
𝑚

𝑖=1

(14)

In order to support dependent task for load

balancing ,Starting from the initial solution,

instances associated with each task needs to be

merged to reduce the number of instances related to

each task to one (). Merging task instances changes

the force in the datacenter instances hosting the task

instances and may change the placement (scheduling)

of the instances related to the dependent tasks (parent

and child tasks) due to scheduling constraints. Based

on the FDS terms, the force change (future force

minus current force) generated from dependent task

instance movements is called dependent-force and

the force change directly related to the task

movement is called self-force. Task instance merging

force (change) is defined as the summation of self-

force and dependent-force. Given any task, the task

instance merging with minimum force is executed to

reduce the total force in the system.

Moreover, to determine the order of task

instance merging execution, tasks are sorted (non-

decreasing) based on their minimum task instance

merging force. Task instance merging is performed

in multiple stages in order to decrease the complexity

of selecting the new host for task instances and avoid

drastic changes in the assignment solution. For this

reason, first the number of task instances in each

epoch is gradually reduced to one (only self-force)

and then number of epochs for each task is reduced

one by one (self-force plus dependent-force). At the

end of the second stage, the schedule of each task is

determined. The pseudo-code for task instance

merging having at most one task instance per epoch

per task is shown in Algorithm 1. In this pseudo-

code, denotes the force related to task instance in

epoch having.

Algorithm 1:FLBS algorithm for task merging

Input :Task instance placed in static manner on the

datacenter and server types (at most one task instance

for each period of the task)

Output :One instance solution for each task to

determine scheduling solution

For each (Job J)

𝑇𝑖𝑗
𝑑 = 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦

For each (𝑡 ∈ 𝑇𝑗)

Let 𝑇𝑆 and 𝑇𝑒 denotes the starting and the ending time

of the task for present task

Total number of the task instance

𝑁 = 𝑇𝑒 − 𝑇𝑠 + 1

If (𝑁 == 1) continue

𝐹𝑡
𝑟,𝑠𝑒𝑙𝑓

= ∑ 𝐹𝑡
𝑁−1𝑇𝑒

𝑇𝑠+1
− ∑ 𝐹𝑡

𝑁𝑇𝑒
𝑇𝑠+1

 // self force shift

to right

𝐹𝑡
𝑟,𝑑𝑒𝑝

= ∑ (𝐹𝑡
𝑟,𝑠𝑒𝑙𝑓

𝑡′∈𝐶𝑗,𝑡
+ 𝐹𝑡

𝑟,𝑑𝑒𝑝) //dependent –

force shift to right

𝐹𝑡
𝑟 = 𝐹𝑡

𝑟,𝑠𝑒𝑙𝑓 + 𝐹𝑡
𝑟,𝑑𝑒𝑝

//dependent –force shift to

right

𝐹𝑡
𝑙,𝑠𝑒𝑙𝑓

= ∑ 𝐹𝑡
𝑁−1𝑇𝑠−1

𝑇𝑠+1
− ∑ 𝐹𝑡

𝑁𝑇𝑒
𝑇𝑠

 // self force shift to

right

𝐹𝑡
𝑙,𝑑𝑒𝑝

= ∑ (𝐹𝑡
𝑟,𝑠𝑒𝑙𝑓

𝑡′∈𝐶𝑗,𝑡
+ 𝐹𝑡

𝑟,𝑑𝑒𝑝) //dependent –

force shift to left

𝐹𝑡
𝑙 = 𝐹𝑡

𝑟,𝑠𝑒𝑙𝑓 + 𝐹𝑡
𝑟,𝑑𝑒𝑝

𝐹𝑗
𝑚𝑖𝑛 = min(𝐹𝑗

𝑚𝑖𝑛 , 𝐹𝑡
𝑟, 𝐹𝑡

𝑙)

End

End

ABC has been successfully used for load

balancing problems [17] as it is easy to develop and

solve many optimization problems with only a few

controls of parameters [18]. ABC suggests the

intellectual searching behavior of a honey bee swarm.

In existing work the basic version of the ABC

algorithm for load balancing with overload,

underload and balanced is performed for independent

task. The basic version of the Artificial Bee Colony

algorithm has only one control parameter ‘‘limit”

apart from the common control parameters of the

population-based algorithms such as population size

or colony size (SN) and maximum generation number

or maximum cycle number (MCN).

But the major problem of this existing ABC

for load balancing, the convergence rate of the

algorithm is poorer when working with constrained

problems, composite functions and some non-

separable functions. In order to improve the speed of

the load balancing for feature dependent and

independent task. In this work proposes a modified

http://www.ijesrt.com/

[Subramani, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [56]

artificial bee colony optimization algorithm (MABC)

for load balancing task. There are three general

modifications are done in usual ABC algorithm There

are introducing the best-so-far solution, inertia weight

and acceleration coefficients to modify the search

process. So it improves the load balancing speed, the

modification forms of the employed bees and the

onlooker ones are different in the second acceleration

coefficient. The modified ABC algorithm for load

balancing for dependent and independent task is

called as MABC. Multiple The operation process for

load balancing can be modified in the following

form,

𝑉𝑖𝑗 = 𝑋𝑖𝑗𝑊𝑖𝑗 + 2(𝜙𝑖𝑗 − 0, .5)(𝑋𝑖𝑗
− 𝑋𝑘𝑗)Φ1

+ 𝜑𝑖𝑗(𝑋𝑗 − 𝑋𝑘𝑗)Φ2

(18)

Where Vij is the new optimal load balancing

results for dependent and independent task . XijWij is

the inertia weight which controls impacts of the load

balancing solution . Xij . Xj is thejth parameter of the

best optimal load balanced results solution so-far, ϕij

and φij are random numbers between [0, 1], Φ1 and

Φ2are positive parameters that could control the

maximum step size of bees for load balancing of

static and dynamic tasks. However, if the global

fitness of the each task is very large, bees are far

away from the best optimal load balanced results.

Conversely, if the global fitness values of load

balancing are small only a small modification needed

for global optimal load balancing results. In this

investigation, the inertia weight and acceleration

coefficients are defined as functions of the fitness in

the search process of ABC. They are proposed as

follows:

𝑊𝑖𝑗 = Φ1 =
1

(1 + exp (−
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖)

𝑎𝑝
))

(19)

Φ2 = 1, 𝑖𝑓𝑎𝑏𝑒𝑒𝑖𝑠𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑑𝑏𝑒𝑒 (20)

Φ2

=
1

(1 + exp (−
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖)

𝑎𝑝
))
𝑖𝑓𝑎𝑏𝑒𝑒𝑖𝑠𝑜𝑛𝑙𝑜𝑜𝑘𝑒𝑟𝑜𝑛𝑒

(21)

Whereap is the Fitness value of the tasks in

the first iteration. In order to further balance the

process of the examination of load balancing results

and the utilization, the modification forms of the

employed bees and the onlooker ones are different in

the acceleration coefficient Φ2.The fitness of each

tasks is assigned randomly depends on the task

completion time and the priority level of the tasks .

The individual fitness condition for each task is

calculated as follows :

𝑓𝑖𝑡𝑖 =
1

1 + 𝑓𝑖𝑡𝑖

(22)

An artificial onlooker bee selects best load

balanced VM rely on the probability value associated

with that task 𝑝𝑖 , calculated by the following

expression,

𝑝𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑛
𝑆𝑁
𝑛=1

(23)

where𝑓𝑖𝑡𝑖represents the fitness value of the

tasks for each VM 𝑖 in the location and SN is the

number of task that run on the VM ,which is

equivalent to the number of employed bees.

Alternative process of the velocity update

Once the optimal load balanced results are

found for current population samples in ABC

algorithm ,the velocity values of the bees need to

update to perform next optimal load balancing results

.The velocity values of the bees are updated using

global best guided bees for load balancing of static

and dynamic tasks ,it is called as Gbest-guided ABC

(GABC). The solution search equation of GABC is

given by the following form,

𝑉𝑖𝑗 = 𝑋𝑖𝑗 + 2(𝜙𝑖𝑗 − 0.5)(𝑋𝑖𝑗 − 𝑋𝑘𝑗) + 𝜑𝑖𝑗(𝑋𝑗
− 𝑋𝑘𝑗)

(24)

Where 𝑉𝑖𝑗 is the new load balanced results

that is modified depending on its previous load

balancing results 𝑋𝑖𝑗 . 𝑋𝑗 is the jth parameter of the

best load balanced results - so-far solution, 𝜙𝑖𝑗 is a

random number between [0, 1], 𝜙𝑖𝑗[0, 𝑐], 𝑐 is a

nonnegative constant, which is set to 1 .In MABC

algorithm; there are three different solution search

equations. The first one is general velocity equation

is modified, which is solution modification form of

the original ABC algorithm for load balancing.

Second one is solution search equation of GABC as

given in Equation (24). In MABC, these load

balancing results operations are replicated by

producing a new VM for each task position randomly

based on the balanced VM results and changing it

with the discarded one. In MABC, if a current task

for each VM position doesn’t improve the load

balancing result within a pre-specified number of

iterations (MCN), and then the current load balanced

task position is assumed to be neglected.

𝜒𝑖
𝑗
= 𝜒𝑚𝑖𝑛

𝑗
+ 𝑟𝑎𝑛𝑑(0,1)(𝜒𝑚𝑎𝑥

𝑗
− 𝜒𝑚𝑖𝑛

𝑗) (25)

In initialization, MABC like ABC starts by

associating all employed bees (Multiple static

features) with randomly generated food sources for

load balanced task for each VM results. After

initialization of task population the food sources of

the load balanced subject to repeated cycles for load

balanced tasks for VM through employed bees,

onlooker bees and scout bees. MABC, an employed

bee firstly finds best optimal Load balanced VM

http://www.ijesrt.com/

[Subramani, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [57]

results based on the three modification mentioned

above ,then chooses and determines the load

balanced results as best load balanced candidate

solution. When all employed bees in the population

have finished load balanced process, they share the

task information for each VM fitness information to

the next stage of the bee called as onlookers, here

each of the bee balance the VM based on the

probability value given in Equation (23). Providing

that the fitness value in equation (22) is better than

that of the previous load balanced population fitness

values for each VM, the bee would memorize the

new load balanced VM position and forget the

previous load balanced results and kept current

multiple static feature selection results as best so for .

Then, feature selection samples position 𝑣𝑖𝑗is

estimated then its performance is compared with that

each one of the previous load balanced VM results. If

the new load balanced VM result is better than old

balanced VM results for each task, it is replaced with

the old balanced VM results in the memory. Or else,

an old Balanced VM results is kept as same. In other

words, a greedy selection system works for the load

balancing between new founded load balancing task

and the old load balancing results

Modified Artificial Bee Colony (MABC)

Optimization algorithm 2

1. Initialize the population of solutions xi, i =
1,…… . . SN ,each population as a number of task

2. Evaluate the population with tasks

3. Set cycle = 1

4. Repeat

5. Produce new load balancing solution 𝑉𝑖𝑗for the

employed bees (features) by using (1) and

evaluate them best multiple static feature and

acceleration ,weight parameters

6. Calculate the W,Φ1, Φ2 using equation (19) ,(20)

and (21)

7. Calculate fitness value to each number of the

tasks by using equation (22).

8. Apply the greedy selection process for the

employed bees

9. Calculate the probability values Pifor each task

xiby (23)

10. Produce the new load balanced solutions 𝑉𝑖𝑗 in

equation (24) for the onlookers from the

solutions Xi selected depending on Pi and

evaluate them

11. Apply the greedy selection process for the

onlookers

12. Determine the abandoned load balanced

solutions for the scout, if exists, and replace it

with a new randomly produced solution 𝜒𝑖
𝑗
by

(25)

13. Memorize the best solution achieved so far

14. cycle = cycle + 1

15. until cycle = MCN

After finding the workload and standard

deviation, the system should decide whether to do

load balancing or not,the dependent task 𝐹𝑗
𝑚𝑖𝑛 . For

this, there are two possible situations i.e., (1) Finding

whether the system is balanced (2) Finding whether

the whole system is saturated or not (The whole

group is overloaded or not). If overloaded, load

balancing is meaningless.

Finding State of the VM group

1. If the standard deviation of the VM load(𝜎)
is under or equal to the threshold condition

set (Ts) [0–1] then the system is balanced

[13].

2. Otherwise system is in an imbalance state. It

may be overloaded or under loaded.

3. If 𝜎 ≤ 𝑇𝑠 , 𝐹𝑗
𝑚𝑖𝑛

4. System is balanced

5. Exit

6. Finding Overloaded Group

When the current workload of VM group

exceeds the maximum capacity of the group, then the

group is overloaded. Load balancing is not possible

in this case.

1. If 𝐿 > 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦, 𝑆 > 𝐹𝑗
𝑚𝑖𝑛

2. Load balancing is not possible

3. Else

4. Trigger load balancing.

The virtual machines will be grouped based

on their loads. The groups are Overloaded VMs,

under loaded VMs

and balanced VMs. Each set contains the

number of VMs. Task removed from one of

overloaded VM set has to a make decision to get

placed in one of several low loaded VMs based on

the load and tasks available in the under loaded VM.

In our technique, this task is considered as a honey

bee and low loaded VMs are considered as the

destination of the honey bees. The information the

bees (tasks) update are load on a VM, load on all

VMs, number of tasks in each VM, the number of

VMs in each VM group (under loaded VM, over

loaded VM, etc.,) and task priorities in each VM.

Load balanced VMs are not used in switching of

tasks. Once the task switching is over, the balanced

VMs are included into the load balanced VM set.

Once this set has all the VMs, the load balancing is

successful i.e., all tasks are balanced.

VM Selection of different prioritized tasks

http://www.ijesrt.com/

[Subramani, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [58]

𝑇ℎ → 𝑉𝑀𝑑 |min(∑𝑇ℎ)

∈ 𝑉𝑚𝑑 , 𝑉𝑀𝑑 |min(∑𝐹𝑡
𝑟,𝑑𝑒𝑝

)

(26)

𝑇𝑚 → 𝑉𝑀𝑑 |min(∑𝑇ℎ +∑𝑇𝑚)

∈ 𝑉𝑚𝑑, 𝑉𝑀𝑑 |min(∑𝐹𝑡
𝑟,𝑠𝑒𝑙𝑓

)

(27)

𝑇𝑙 → 𝑉𝑀𝑑 |min(∑𝑇)

∈ 𝑉𝑚𝑑, 𝑉𝑀𝑑 |min(∑ 𝐹𝑗
𝑚𝑖𝑛)

(28)

where 𝑇ℎ , 𝑇𝑚 , 𝑇𝑙 are the tasks of high, middle

and low priority cadres respectively. The priorities of

tasks can be categorized in 3 cadres (high, middle,

and low). When a high priority task has to be

submitted to one of the under loaded machines, it has

to consider the high priority tasks already submitted

to that machine. This will ensure that the high

priority task will find the machine which has less

number of high priority tasks.

Experimentation results
A cloud computing system has to handle

several hurdles like network flow, load balancing on

virtual machines, federation of clouds, scalability and

trust management and so on. Research in cloud

computing generally focus on these issues with

varying importance. Clouds offer a set of services

(software and hardware) on an unprecedented scale.

Cloud Services have to handle the temporal variation

in demand through dynamic provisioning or

deprovisioning from clouds. Considering all these,

we cannot directly use the cloud computing system.

Experimenting new techniques or strategies in real

cloud computing operations is not practically

possible as such experiments will compromise the

end users QoS requirements like security, cost, and

speed. CloudSim [19-20] simulator is a generalized

simulation framework that allows modeling,

simulation and experimenting the cloud computing

infrastructure and application services [20]. In this

section, have analyzed the performance of our

algorithm based on the results of simulation done

using CloudSim. Then extended the classes of

CloudSim simulator to simulate our algorithm.

Figure 1: Comparison of makespan before and after load

balancing using HBB and MABC-LBDID.

Figure. 1 illustrate the comparison of

Makespan before and after Load balancing using

HBB-LB, MABC-LBDID. The X-axis represents the

number of tasks and the Y-axis represents the

Makespan (task execution and completion time) in

seconds, it shows that proposed MABC-LBDID are

less execution time than the HBB-LB

Figure 2: Response time of VMs in seconds for MABC-

LBDID and HBB-LB

Figure 2 illustrates the response time of

VMs in seconds for MABC-LBDID and HBB-LB

Algorithms. The X-axis represents number of tasks

and the Y-axis represents time in seconds. It is

evident that MBAC-LBDID is more efficient

compared with other HBB-LB.

𝐷𝐼 =
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

𝑇𝑎𝑣𝑔

(29)

Where 𝑇𝑚𝑎𝑥 &𝑇𝑚𝑖𝑛 are the maximum and

minimum 𝑇𝑖among all VMs, 𝑇𝑎𝑣𝑔 is the average 𝑇𝑖 of

0

5

10

15

20

25

30

35

40

10 15 20 25 30

E
x
e
c
u

ti
o
n

 t
im

e
 (

s)

Number of task

Execution time
BL AFLB-HBB AFLBDID-MABC

0

1

2

3

4

5

6

7

8

9

10

10 15 20 25 30

T
im

e
(s

)

Number of task

Response time

AFLB-HBB AFLBDID-MAFSA

http://www.ijesrt.com/

[Subramani, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [59]

VMs. Our load balancing system reduces the degree

of imbalance drastically.

Figure 3: Degree of imbalance between VMs before and

after

Figure.3 shows the degree of imbalance

between VMs before and after load balancing with

HBB-LB and MABC-LBDID . The X-axis represents

number of tasks and the Y-axis represents the degree

of imbalance. It is clearly evident that after load

balancing with HBB-LB and proposed MABC-

LBDID, the degree of imbalance is greatly reduced.

Figure 4: Comparison of number of task migrations

Figure 4 shows the comparison of degree of

imbalance between HBB-LB and MABC-LBDID.

The X-axis represents number of tasks and the Y-axis

represents the degree of imbalance. MABC-LBDID

is more efficient and has a lesser degree of imbalance

when compared with other three algorithms.

Conclusion
In this paper, we have proposed a load

balancing technique for cloud computing

environments based on behavior of modified artificial

bee colony algorithm. This algorithm not only

balances the load, but also takes into consideration

the priorities of tasks for both dependent and

independent tasks that have been removed from

heavily loaded Virtual Machines. The tasks removed

from these VMs are treated as bees, which are the

information updaters globally. This algorithm also

considers the priorities of the tasks. The proposed

MABC-LBDID tasks supports both static and

dynamic load balancing improves the overall

throughput of processing and priority based

balancing focuses on reducing the amount of time a

task has to wait on a queue of the VM. Thus, it

reduces the response of time of VMs. Experimental

results were compared with existing honey bee

behavior load balancing algorithm. Results show that

our algorithm stands good without increasing

additional overheads. This load balancing technique

works well for heterogeneous cloud computing

systems and is for balancing non preemptive

independent tasks In present work improves QOS

result by considering priority only, other types of

QOS factors also important to improve QOS result.

In future, plan to improve this algorithm by

considering other QoS factors also.

References
[1] Sandeep Sharma, Sarabjeet Singh,

Meenaksshi Sharma, “Performance Analysis

of Load Balancing Algorithms”, World

Academy of Science, Engineering and

Technology, 2008.

[2] Hisao Kameda, EL-Zoghdy Said Fathyy and

Inhwan Ryuz Jie Lix, “A Performance

Comparison of Dynamic vs Static Load

Balancing Policies in a Mainframe,

Personal Computer Network Model”,

Proceedings Of The 39th IEEE Conference

on Decision & Control, 2000.

[3] Ali M Alakeel, “A Guide To Dynamic Load

Balancing In Distributed Computer

Systems”, International Journal of

Computer Science and Network Security,

Vol. 10 No. 6, June 2010.

[4] U.Chatterjee, “A Study on Efficient Load

Balancing Algorithms in Cloud computing

Environment”,International Journal of

Current Engineering and Technology, Vol.3,

11 November 2013

[5] M. Houle, A. Symnovis, D. Wood,

Dimension-exchange algorithms for load

balancing on trees, in: Proc. of 9th Int.

Colloquium on Structural Information and

Communication Complexity, Andros,

Greece, June, 2002, pp. 181–196.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

10 15 20 25 30

Im
b

a
la

n
c
e
d

 d
e
g
r
e
e

Number of task

Imbalanced degree
BL AFLB-HBB AFLBDID-MABC

0

1

2

3

4

5

6

7

8

9

10 15 20 25 30

n
u

m
b

e
r
 o

f
ta

sk
s

m
ig

r
a
te

d

Number of task

Task migration
AFLB-HBB AFLBDID-MABC

http://www.ijesrt.com/

[Subramani, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [60]

[6] Abhijit A Rajguru, S.S. Apte, “A

Comparative Performance Analysis of Load

Balancing Algorithms In Distributed

Systems Using Qualitative Parameters”,

International Journal of Recent Technology

and Engineering, Vol. 1, Issue 3, August

2012.

[7] A.khiyait, H.Bakkali, M.Zbakh, D.Kettani,

Load Balancing Cloud Computing: state of

art”, UniversityMohammed V Souissi Rabat

Morocco, 2012.

[8] H.Mahalle, P.Kaveri, V.Chavan, “Load

Balancing on Cloud Data Centers”,

international Journal of Advance Research

in computer Science and Software

Engineering, vol. 3, Jan. 2013.

[9] A.Sidhu, S.Kinger, “Analysis of Load

Balancing techniques in Cloud Computing”,

Council for innovativeresearch international

Journal of Computer & Technology, vol.4,

March-April 2013.

[10] M. Randles, D. Lamb, A. Taleb-Bendiab, A

comparative study into distributed load

balancing algorithms for cloud computing,

in: Proceedings of 24th IEEE International

Conference on Advanced Information

Networking and Applications Workshops,

Perth, Australia, April, 2010, pp. 551–556

[11] M. Randles, A. Taleb-Bendiab, D. Lamb,

Scalable self governance using service

communities as ambients, in: Proceedings of

the IEEE Workshop on Software and

Services Maintenance and Management

(SSMM 2009) within the 4th IEEE Congress

on Services, IEEE SERVICES-I 2009, July

6–10, Los Angeles, CA (to appear), 2009.

[12] B. Yagoubi, Y. Slimani, Dynamic load

balancing strategy for grid computing,

transactions on engineering, Computing and

Technology 13 (May) (2006) 260–265.

[13] B. Yagoubi, Y. Slimani, Task load balancing

strategy for grid computing, Journal of

Computer Science 3 (3) (2007) 186–194.

[14] B. Yagoubi, M. Medebber, A load balancing

model for grid environment,computer and

information sciences, 2007. iscis 2007, in:

22nd International Symposium on, 7–9 Nov,

2007, pp. 1–7.

[15] Ali, A.D., 2001. A dynamic cluster

constructor for load balancing in big

heterogeneous distributedsystems.

Proceeding of the Symposium on

Performance Evaluation of Computer and

Telecommunication Systems, July 15-19,

Orlando, Florida, USA., pp: 47-55.

[16] N.Suguna and K.G.Thanushkodi, “An

Independent Rough Set Approach Hybrid

with Artificial Bee Colony Algorithm for

Dimensionality Reduction”, American

Journal of Applied Sciences 8 (3): 261 –

266, 2011

[17] Li Bao and Jian-chao Zeng, Comparison

and Analysis of the Selection Mechanism in

the Artificial Bee Colony Algorithm, Proc.

IEEE Ninth International Conference on

Hybrid Intelligent Systems, 2009, 411-416.

[18] R.F. de Mello, L.J. Senger, L.T. Yang, A

routing load balancing policy for grid

computing environments, in: 20th

International Conference on, vol. 1, 18–20

April, Advanced Information Networking

and Applications, 2006. AINA 2006. (2006)

6.

[19] R.N. Calheiros, R. Ranjan, A. Beloglazov,

C.A.F. De Rose, R. Buyya, CloudSim: a

toolkit for modeling and simulation of cloud

computing environments and evaluation of

resource provisioning algorithms, Software:

Practice and Experience 41 (2011) 23–50,

http://dx.doi.org/10.1002/spe.995.

[20] R.N. Calheiros, R. Ranjan, C.A.F.D. Rose,

R. Buyya, CloudSim: a novel framework for

modeling and simulation of cloud computing

infrastructures and services, Computing

Research Repository, vol. abs/0903.2525,

2009.

Author Biography

S Rekha

Done her Post graduation in

G.R.Damodaran College of

science and currently

pursuing master of

philosophy and also working

as a Assistant professor in Dr.

N.G.P. arts and science

college, Coimbatore. She has

more than 4 years of teaching

experience and her research

interest in cloud computing

and Networking.

Email:

sampathrekha@yahoo.com

http://www.ijesrt.com/

[Subramani, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [61]

B Subramani

He has around 20 years of

postgraduate teaching

experience in Computer

Science.His Research interest

includes Advanced

networking, Mobile

computing, and cloud

comuting. He is currently

pursuing his Ph.D in

Computer Science in

Bharathiar university,

Coimbatore. He is a Life

member in C S I : Computer

Society of India , board of

studies(bharathiar university),

Commission Member Course

Approvals (Bharathiar

university), BoS - Madurai

kamaraj University, PG BoS-

Ayya Nadar Janaki Ammal

College, Sivakasi, UG Bos-

Kongu Nadu Arts and

Science College. He has been

keenly involved in organizing

training programmes for

students and faculty members

and also he guides number of

research scholars in

Computer Science. Currently

he is Heading the

Department of information

technology, Dr. N.g.p. arts

and science college,

Coimbatore.

Email:

subramaningp@gmail.com

http://www.ijesrt.com/

